Need Help ? Talk to our Expert
India’s No. 1 AI Based App For IIT-JAM,CSIR – UGC NET, GATE & Other Competitive Examination.
Section 1: Atomic Structure and Periodicity
Planck’s quantum theory, wave particle duality, uncertainty principle, comparison between Bohr’s model and quantum mechanical model of hydrogen atom, electronic configuration of atoms and ions. Hund’s rule and Pauli’s exclusion principle. Periodic table and periodic properties: ionization energy, electron affinity, electronegativity and atomic size.
Section 2: Structure and Bonding
Ionic and covalent bonding, MO and VB approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridization, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding and van der Waals interactions. Ionic solids, ionic radii and lattice energy (Born‐Haber cycle). HSAB principle.
Section 3: s, p and d Block Elements
Oxides, halides and hydrides of alkali, alkaline earth metals, B, Al, Si, N, P, and S. General characteristics of 3d elements. Coordination complexes: valence bond and crystal field theory, colour, geometry, magnetic properties and isomerism.
Section 4: Chemical Equilibria
Osmotic pressure, elevation of boiling point and depression of freezing point, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications. Equilibrium constants (Kc, Kp, and KX) for homogeneous reactions.
Section 5: Electrochemistry
Conductance, Kohlrausch law, cell potentials, EMF, Nernst equation, thermodynamic aspects and their applications.
Section 6: Reaction Kinetics
Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions. Reversible and irreversible inhibition of enzymes.
Section 7: Thermodynamics
Qualitative treatment of state and path functions, First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff equation, heat of reaction, Hess’s law, heat of formation. Second law, entropy and free energy. Gibbs‐Helmholtz equation, free energy change and spontaneity, Free energy changes from equilibrium constant.
Section 8: Structure-Reactivity Correlations and Organic Reaction Mechanisms
Acids and bases, electronic and steric effects, Stereochemistry, optical and geometrical isomerism, tautomerism,
Section 9: Chemistry of Biomolecules
Amino acids, proteins, nucleic acids and nucleotides. Peptide sequencing by chemical and enzymatic proteolytic methods. DNA sequencing by chemical and enzymatic methods. Carbohydrates (upto hexoses only). Lipids (triglycerides only). Principles of biomolecule purification-Ion exchange and gel filtration chromatography. Identification of these biomolecules and Beer-Lambert’s law
Section 1
Organization of life; Importance of water; Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids; Protein structure, folding/misfolding and function; Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin.
Section 2
Enzyme kinetics, regulation and inhibition; Vitamins and Coenzymes; Bioenergetics and metabolism; Generation and utilization of ATP; Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism; Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis, Calvin cycle.
Section 3
Biochemical separation techniques: Ion exchange, size exclusion and affinity chromatography, centrifugation; Characterization of biomolecules by electrophoresis; DNA- protein and protein – protein interactions; UV-visible and fluorescence spectroscopy; Mass spectrometry.
Section 4
Cell structure and organelles; Biological membranes; Action potential; Transport across membranes; Membrane assembly and Protein targeting; Signal transduction; Receptor-ligand interaction; Hormones and neurotransmitters.
Section 5
DNA replication, transcription and translation; DNA damage and repair; Biochemical regulation of gene expression; Recombinant DNA technology and applications: PCR, site directed mutagenesis, DNA-microarray; Next generation sequencing; Gene silencing and editing.
Section 6
Immune System: Innate and adaptive; Cell of the immune system; Active and passive immunity; Complement system; Antibody structure, function and diversity; B cell and T Cell receptors; B cell and T cell activation; Major histocompatibilty complex; Immunological techniques: Immuno diffusion, immune-electrophoresis, RIA and ELISA, flow cytometry; monoclonal antibodies and their applications.
Section 1: Plant Systematics
Botanical nomenclature, history of plant taxonomy, diversity and classification of plants, APG system of plant classification; phylogenetics and cladistics, molecular taxonomy and DNA barcoding; Centers for plant taxonomy and herbaria in India.
Section 2: Plant Anatomy
Anatomy of root, stem and leaves, floral organs, embryo and young seedlings, Primary and secondary meristems,stellar organization, vascular system and their ontogeny, xylem and phloem structure, secondary growth in plants andwood anatomy, plant cell structure and differences from animal cells.
Section 3: Plant Development; Cell and Tissue Morphogenesis
Life cycle of an angiosperm, development of male and female gametophyte; cell fate determination and tissue patterning; spacing mechanisms in trichomes and stomata. Embryogenesis, organization and function of shoot and root apical meristems. Transition to flowering: photoperiodism and vernalization, ABC model of floral organ patterning, pollen germination, double fertilization, seed development; Xylem and phloem cell differentiation, photomorphogenesis; phytochrome, cryptochrome, phototropin. Role of auxin, cytokinin, gibberellins, and brassinosteroids on plant development.
Section 4: Plant Physiology and Biochemistry
Plant water relations, mechanisms of uptake and transport of water, ions, solutes from soil to plants, apoplastic and symplastic transport mechanisms. Mechanism of stomatal movements, nitrogen metabolism, photosynthesis; C3, C4 and CAM cycles, photorespiration, respiration: glycolysis, TCA cycle and electron transport chain. Plant responses and mechanisms of abiotic stresses including drought, salinity, freezing and heat stress, metal toxicity; role of abscisic acid in abiotic stresses. Structure and function of biomolecules (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics. Structure and biosynthesis of major plant secondary metabolites (alkaloids, terpenes, phenylpropanoids, flavonoids). Biosynthesis, mechanism of action and physiological effects of auxin, cytokinin, gibberellic acids, brassinosteroid, ethylene, strigolactone, abscisic acid, salicylic and jasmonic acid. Senescence and programmed cell death.
Section 5: Genetics and Genomics
Cell cycle and cell division. Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extra chromosomal inheritance; Introduction to epigenetics; gene silencing- transgene silencing, post transcriptional gene silencing, miRNA and siRNA; evolution and organization of eukaryotic genome structure, gene expression, gene mutation and repair, chromosomal aberrations (numerical: euploidy and aneuploidy and structural: deletion, duplication, inversion, translocation), transposons. Model organisms for functional genetics and genomics; Introduction to transcriptomics, proteomics and metabolomics.
Section 6: Plant Breeding, Genetic Modification, Genome Editing
Principles, methods – selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, embry rescue, haploid and doubled haploids, plant tissue culture: micropropagation, embryo culture and in vitro regeneration, somatic embryogenesis, artificial seed, cryopreservation, somaclonal variation, somatic cell hybridization, marker- assisted selection, gene transfer methods viz. direct and vector-mediated, generation of transgenic plants; Introduction to genome editing: CRISPR/Cas9, Cre-Lox system to generate chimeras; plastid transformation; chemical mutagenesis.
Section 7: Economic and Applied Botan
A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Major Indian cash crops. Effect of industrialization on agricultural botany such as plastic on fiber economy. Genetically modified crops and its regulation, e.g. Bt cotton, Bt brinjal, golden rice etc.
Section 8: Plant Pathology
Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria, nematodes and viruses, and their control measures (chemical and biological) mechanism(s) of pathogenesis, resistance: basal, systemic, induced systemic resistance, gene for gene concept. Molecular detection of pathogens; plant-microbe interactions: symbionts and mycorrhiza, pathogens and pests. Signaling pathways in plant defence response; salicylic acid (SA) and jasmonic acid (JA) in plant-pathogen and plant-herbivore interaction, necrosis; host-parasitic plan interaction (such as Cuscuta).
Section 9: Ecology and Environment
Ecosystems – types, dynamics, degradation, biogeochemical cycles, ecological succession; food webs and energy flow through ecosystem; vegetation types of the world, Indian vegetation types and biogeographical zones, climate and flora endemism; pollution and global climate change, speciation and extinction, biodiversity and conservation strategies, ecological hotspots, afforestation, habitat restoration; plant interactions with other organisms; epiphytes, parasites and endophytes.
Section 1: Historical Perspective
Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases.
Section 2: Methods in Microbiology
Pure culture techniques; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; antigen and antibody detection methods for microbial diagnosis; Light-, phase contrast-, fluorescence- and electron-microscopy; PCR, real-time PCR for quantitation of microbes; Next generation sequencing technologies in microbiology.
Section 3: Microbial Taxonomy and Diversity
Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy and phylogeny.
Section 4: Prokaryotic Cells: Structure and Function
Prokaryotic Cells: Cell walls, cell membranes and their biosynthesis, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Bacterial locomotion, including positive and negative chemotaxis.
Section 5: Microbial Growth
Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth; Bacterial biofilm and biofouling.
Section 6: Control of Micro-organisms
Disinfection and Sterilization: Principles, methods and assessment of efficacy.
Section 7: Microbial Metabolism
Energetics: redox reactions and electron carriers; Electron transport and oxidative phosphorylation; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways.
Section 8: Microbial Diseases and Host Pathogen Interaction
Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Opportunistic infections; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; passive immunization; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi.
Section 9: Chemotherapy/Antibiotics
General characteristics of antimicrobial drugs; Antibiotics: Classification molecular mechanism of mode of action and resistance; Antifungal and antiviral drugs.
Section 10: Microbial Genetics
Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage λ and its life cycle; RNA ; mutation in virus genomes, virus recombination and reassortment; Basic concept of microbial genomics.
Section 11: Microbial Ecology
Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants; Bioremediation; Uncultivable microorganisms; basic concept of metagenomics and metatranscriptomics.
Section 1: Animal Diversity
Distribution, systematics and classification of animals, phylogenetic relationships (based on classical and molecular phylogenetic tools).
Section 2: Evolution
Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation.
Section 3: Genetics
Basic Principles of inheritance, molecular basis of heredity, sex determination and sex-linked characteristics, cytoplasmic inheritance, linkage, recombination and mapping of genes in eukaryotes, population genetics, genetic disorders, roles of model organisms in understanding genetic principles.
Section 4: Biochemistry and Molecular Biology
Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation, Krebs cycle, glycolysis, enzyme catalysis, hormones and their actions, roles of vitamins and minerals.
Section 5: Cell Biology
Basic principles of cellular microscopy, structure of cell, cytoskeletal organization, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure.
Section 6: Gene expression in Eukaryotes
Eukaryotic genome organization and regulation of gene expression, transposable elements.
Section 7: Animal Anatomy and Physiology
Comparative physiology, the respiratory system, Muscular system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system.
Section 8: Parasitology and Immunology
Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response.
Section 9: Development Biology
Gametogenesis, Embryonic development, cellular differentiation, organogenesis, metamorphosis, Model organisms used in developmental biology, genetic and molecular basis of development, stem cells.
Section 10: Ecology
The ecosystem, Animal distribution, ecological niche and its contribution to ecological diversity, the food chain, population dynamics, species diversity, zoogeography, biogeochemical cycles, conservation biology, ecotoxicology.
Section 11: Animal Behaviour
Type of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of behavior in animals.
Section 1: Food Chemistry and Nutrition
Carbohydrates: Structure and functional properties of mono-, oligo-, & poly- saccharides including starch, cellulose, pectic substances and dietary fibre, gelatinization and retrogradation of starch. Proteins: classification and structure of proteins in food, biochemical changes in post mortem and tenderization of muscles. Lipids: classification and structure of lipids, rancidity, polymerization and polymorphism. Pigments: carotenoids, chlorophylls, anthocyanins, tannins and myoglobin. Food flavours: terpenes, esters, aldehydes, ketones and quinines. Enzymes: specificity, simple and inhibition kinetics, coenzymes, enzymatic and non- enzymatic browning. Nutrition: balanced diet, essential amino acids and essential fatty acids, protein efficiency ratio, water soluble and fat soluble vitamins, role of minerals in nutrition, co-factors, anti-nutrients, nutraceuticals, nutrient deficiency diseases. Chemical and biochemical changes: changes occur in foods during different processing.
Section 2: Food Microbiology
Characteristics of Microorganisms: Morphology of bacteria, yeast, mold and actinomycetes, spores and vegetative cells, gram-staining. Microbial growth: growth and death kinetics, serial dilution technique. Food spoilage: spoilage microorganisms in different food products including milk, fish, meat, egg, cereals and their products. Toxins from microbes: pathogens and non-pathogens including Staphylococcus, Salmonella, Shebelle, Escherichia, Bacillus, Clostridium, and Aspergillums genera. Fermented foods and beverages: curd, yoghurt, cheese, pickles, soya-sauce, sauerkraut, idly, dose, vinegar, alcoholic beverages and sausage.
Section 3: Food Products Technology
Processing Principles: Thermal processing, chilling, freezing, dehydration, addition of preservatives and food additives, irradiation, fermentation, hurdle technology, intermediate moisture foods. Food pack aging and storage: packaging materials, aseptic packaging, controlled and modified atmosphere storage. Cereal processing and products: milling of rice, wheat, and maize, parboiling of paddy, bread, biscuits, extruded products and ready to eat breakfast cereals. Oil processing: expelling, solvent extraction, refining and hydrogenation. Fruits and vegetables processing: extraction, clarification, concentration and packaging of fruit juice, jam, jelly, marmalade, squash, candies, tomato sauce, ketchup, and puree, potato chips, pickles. Plantation crops processing and products: tea, coffee, cocoa, spice, extraction of essential oils and oleoresins from spices. Milk and milk products processing: pasteurization and sterilization, cream, butter, ghee, ice- cream, cheese and milk powder. Processing of animal products: drying, canning, and freezing of fish and meat; production of egg powder. Waste utilization: pectin from fruit astes, uses of by-products from rice milling. Food standards and quality maintenance: FPO, PFA, A-Mark, ISI, HACCP, food plant sanitation and cleaning in place (CIP).
Section 4: Food Engineering
Mass and energy balance: Momentum transfer: Flow rate and pressure drop relationships for Newtonian fluids flowing through pipe, Reynolds number. Heat transfer: heat transfer by conduction, convection, radiation, heat exchangers. Mass transfer: molecular diffusion and Flick’s law, conduction and convective mass transfer, permeability through single and multilayer films. Mechanical operations: size reduction of solids, high pressure homogenization, filtration, centrifugation, settling, sieving, mixing & agitation of liquid. Thermal operations: thermal sterilization, evaporation of liquid foods, hot air drying of solids, spray and freeze-drying, freezing and crystallization. Mass transfer operations: psychometric, humidification and dehumidification operations.
Download GATE Life Science Syllabus PDF
Quick Links
GATE notification 20245
GATE eligibility 2025
GATE admit card 2025
GATE Result 2025
GATE Exam Pattern 2025
GATE syllabus 2025
GATE books & study material
GATE Mock Test
The GATE Mock Test Series offers an excellent opportunity for effective preparation. Take the free GATE Mock Test to evaluate your knowledge, assess your strengths, and identify areas that need improvement. Additionally, purchasing the GATE Online Test Series will greatly enhance your performance, increasing your chances of success in the exam. With over 10,000 questions and answers, Bansal Academy consistently updates all MCQs to ensure you’re fully prepared for the latest exam trends and syllabus. The GATE Mock Test Series offers an excellent opportunity for effective preparation. Take the free GATE Mock Test to evaluate your knowledge, assess your strengths, and identify areas that need improvement. Additionally, purchasing the GATE Online Test Series will greatly enhance your performance, increasing your chances of success in the exam. With over 10,000 questions and answers, Bansal Academy consistently updates all MCQs to ensure you’re fully prepared for the latest exam trends and syllabus.
Preparing for the GATE exam requires a thorough understanding of the syllabus. Before diving into the study material, it’s essential to familiarize yourself with the syllabus to gain a clear understanding of the topics and areas that need to be covered. The GATE syllabus serves as a roadmap, providing a comprehensive overview of the subjects and subtopics that will be tested. By studying the syllabus carefully, you’ll be able to tailor your preparation and focus on the most critical areas, enabling you to make the most of your study time and efforts.
The GATE Study Materials are developed by the Bansal Academy Research and Development wing which is constantly striving to update the materials with recent research along with in-depth Analysis of the Syllabus and PYQs. Yet, it is concise and easily comprehensible.
The GATE Study Materials are designed and regularly updated by the Career Endeavour Research and Development wing, incorporating latest research and thorough analysis of the syllabus and previous year questions, while maintaining a clear and concise format for easy understanding.
Skilled and Experienced Educators
Supportive 1:1 Coaching
📝 Personal Development
🏆 Goal-oriented Learning
India’s No. 1 Online and Offline Based preparation For IIT-JAM, CSIR – UGC NET, GATE & Other Competitive Examination.
Crack CSIR NET, UGC, IIT JAM exam with India’s Super Teachers.
We are here to assist you in elevating your educational attainment and maintaining concentration during your studying process.
Pallavi Thakur
Life Science
5/5⭐⭐⭐⭐⭐
CSIR-NET qualified, 5 years of experience 🏆📚✨
Vinay Arora
Life Science
5/5⭐⭐⭐⭐⭐
CSIR-NET qualified, 7 years of experience 🏆📚✨
Surbhi Raheja
Life Science
5/5⭐⭐⭐⭐⭐
CSIR-NET qualified, 8 years of experience 🏆📚✨
Prepare Your Exam with Bansal Academy’s & Achieve Your Dreams
One Stop Solution For All Exam Preparation Live classes, Mock Tests, Videos, study materials and many more.
Online Classes
Classroom Coaching
Study Materials
Online Mock Test Series
Coaching By Bansal Academy
Mock Test Series
Our aim is to revolutionize the way students ready themselves online for competitive tests.
OUR COACHING
CUET PG Coaching
GAT B Coaching
PSC Coaching
DBT Coaching
NBHM Coaching
DOWNLOAD APP NOW
Exclusive Offer : Save 70% !
Get Upto 70 % Off on Every Course
Limited Period Offer **